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Abstract

An inverse problem for turbulent forced convection between parallel flat plates is investigated. The space- and

time-dependent heat flux at the upper wall is estimated from the temperature measurements taken inside the flow. In

the present study, the conjugate gradient method is adopted for the estimation of the unknown wall heat flux. No

prior information is needed for the functional form of the wall heat flux in the inverse analysis. The effects of the mea-

surement errors, the functional form of the wall heat flux, and the location of the sensors on the accuracy of the estimation

are investigated. The reconstruction of the wall heat flux is satisfactory when simulated exact or noisy data are input to

the inverse analysis. The sensitivity coefficients are discussed in this paper. As expected, it is shown that the accuracy of

the estimation can be improved when the sensors are located closer to the upper wall.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Inverse heat transfer problems are important when

direct measurements of the desired physical quantities

are not possible. The inverse techniques can be used to

determine crucial parameters in conduction, convection,

and radiation in many engineering applications. Exam-

ples include, among others, estimation of the boundary

heat flux of a heating material, control of the freezing

interface of a solidifying metal, and determination of the

radiative properties of a semi-transparent medium. The

inverse problems are known as ill-posed, hence the es-

timation is very sensitive to the measurement errors of

the input data. To overcome the instability of the inverse

problem different methods have been developed. Several

texts have been devoted to this topic [1–4].

Inverse problems of heat convection started to re-

ceive much attention more recently. Raghunath [5],

Bokar and Ozisik [6], and Liu and Ozisik [7] considered

the inverse convection problem of determining the inlet

temperature of a thermally developing hydrodynami-

cally developed laminar flow between parallel plates

from temperature measurements taken downstream of

the entrance. Moutsoglou [8] investigated the steady-

state inverse forced convection problem between parallel

flat plates. The wall heat flux of the top wall was esti-

mated from measured temperature data at the bottom

wall using the straight inversion and the whole domain

regularization schemes. Huang and Ozisik [9] deter-

mined the spacewise variation of the wall heat flux for

laminar flow in a parallel plate duct from temperature

measurements inside the flow at several different loca-

tions along the flow. Liu and Ozisik [10] estimated the

timewise variation of the wall heat flux for transient

turbulent forced convection inside parallel plate ducts.

The conjugate gradient method with an adjoint equation

was adopted to solve the problem. Machado and

Orlande [11] applied the conjugate gradient method with

an adjoint equation to estimate the timewise and

spacewise variation of the wall heat flux in laminar

forced convection. Park and Lee [12] employed the

Karhunen-Loeve Galerkin procedure to solve the in-

verse problem of determining the space-dependent wall

heat flux for laminar flow inside a duct from the tem-

perature measurement within the flow.
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In the present paper, an inverse problem for the es-

timation of the space- and time-dependent wall heat flux

for unsteady turbulent forced convection between par-

allel flat plates from the temperature measurements

taken inside the flow is considered. The governing

equations for the direct problem will be introduced first.

The inverse analysis will then be considered. Test cases

will be presented to discuss the effects of the measure-

ment errors, the functional form, and the location of the

sensors on the estimation.

2. Analysis

2.1. Direct problem

We consider a thermally developing, hydrodynami-

cally developed turbulent flow through a horizontal

plane channel with width b. The flow is assumed to be
two-dimensional, and the fluid is Newtonian and con-

stant properties. Initially, the flow and the channel are at

the same temperature T0. Fluid enters the channel at a
uniform temperature T0. At t > 0, the lower wall is
maintained insulated while the upper wall is subjected to

a wall heat flux qðx; tÞ. A schematic diagram of the

problem is given in Fig. 1. The axial conduction and

viscous dissipation are ignored. The governing equation

in dimensionless form is given by
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with the initial and boundary conditions
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Here, m is the kinematic viscosity, a is the thermal dif-
fusivity, k is the thermal conductivity, u0 is the inlet

Nomenclature

b channel width

d direction of descent

J objective function

k thermal conductivity

M the number of the measured data in the X -
direction

N the number of the measured data in the s-
direction

Pr Prandtl number

Q dimensionless wall heat flux

q wall heat flux

qref reference heat flux

Re Reynolds number

T temperature

T0 initial temperature

t time

U dimensionless velocity

u0 inlet velocity

u velocity

X , Y dimensionless coordinates

x, y coordinates

Y1 Y coordinate of the sensors
Z measured temperature data

Greek symbols

a thermal diffusivity

b step size

eþ dimensionless turbulent viscosity

c conjugate coefficient

m kinematic viscosity

h dimensionless temperature

r standard deviation

s dimensionless time

f random variable

Subscript

t turbulent

Superscript

p pth iteration

Fig. 1. Schematic of the physical system and coordinates.
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velocity, mt is the turbulent diffusivity of momentum, at is
the turbulent diffusivity of heat, qref is the reference heat
flux. Heat transfer into the fluid is assumed to be positive.

The fully developed turbulent velocity profile u and
turbulent diffusivity of momentum mt are solved by the
low Reynolds number k-e model used in Ref. [13]. The
value of the turbulent Prandtl number Prt is taken to
be 0.9.

The direct problem can be solved to obtain the di-

mensionless temperature field when U , Q, Re, Pr, Prt and
eþ are known. A fully implicit numerical scheme in

which the x-direction convection term is approximated

by the upstream difference, the y-direction diffusion term
by the central difference and the unsteady term by the

backward difference is employed to transform the gov-

erning equations into finite difference equations. This

system of equations forms a tridiagonal matrix which

can be solved by the Thomas Algorithm [14].

2.2. Inverse problem

The inverse problem considered in this paper is to

estimate the unknown dimensionless wall heat flux from

temperature measurements taken in the flow field. It is

solved as an optimization problem which minimizes the

summation of the square of the differences between the

estimated dimensionless temperatures hðXi; Y1; skÞ and
the measured dimensionless temperatures ZðXi; Y1; skÞ.
The objective function J is given by

J ¼
XM
i¼1

XN
k¼1

ðhi;k � Zi;kÞ2 ð7Þ

where hi;k ¼ hðXi; Y1; skÞ, Zi;k ¼ ZðXi; Y1; skÞ, M is the

number of the sensors, N is the number of the data

sampled for each sensor, and Y1 is the Y coordinate of
the sensors. The minimization of the objective function

is obtained by the conjugate gradient method [15]. It-

erations are built in the following manner

Qpþ1
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m;n ð8Þ
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The iteration process given by Eqs. (8)–(11) requires the

sensitivity coefficient ohi;k=oQm;n and the gradient of the

objective function oJ=oQm;n.

2.3. Sensitivity problem

The sensitivity problem is obtained by differentiating

the direct problem given by Eqs. (1)–(5) with respect to

Qm;n, from which we can show that
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Fig. 2. Exact and estimated wall heat fluxes for Y1 ¼ 0:9 and
r ¼ 0:02.
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Fig. 3. Exact and estimated wall heat fluxes for Y1 ¼ 0:9 and
r ¼ 0:04.

H.-Y. Li, W.-M. Yan / International Journal of Heat and Mass Transfer 46 (2003) 1041–1048 1043



o

os
oh

oQm;n

� �
þ 1
2
PrReU

o

oX
oh

oQm;n

� �

¼ o

oY
1

��
þ Pr
Prt

eþ
�

o

oY
oh

oQm;n

� ��
ð12Þ

ohðX ; Y ; 0Þ
oQm;n

¼ 0 ð13Þ

ohð0; Y ; sÞ
oQm;n

¼ 0 ð14Þ

o

oY
ohðX ; 0; sÞ

oQm;n

� �
¼ 0 ð15Þ

o

oY
ohðX ; 1; sÞ

oQm;n

� �
¼ u

_ðX � Xm; s � snÞ ð16Þ

for m ¼ 1; 2; . . . ;M and n ¼ 1; 2; . . . ;N , where

u
_ðX � Xm; s � snÞ ¼

1; X ¼ Xm; s ¼ sn
0; otherwise

�
ð17Þ

2.4. Gradient equation

The gradient of the objective function, oJ=oQm;n, is

determined by differentiating equation [7] with respect to

Qm;n to obtain

oJ
oQm;n

¼ 2
XM
i¼1

XN
k¼1

ðhi;k � Zi;kÞ
ohi;k

oQm;n
ð18Þ

2.5. Stopping criterion

If the problem contains no measurement errors, the

condition JðQp
m;nÞ < d can be used for terminated the

Fig. 4. The sensitivity coefficient ohðX ; 0:95; sÞ=oQ2;2.

Fig. 5. The sensitivity coefficient ohðX ; 0:9; sÞ=oQ2;2.
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iterative process, where d is a small specified positive
number. However, the measured temperature data

contain measurement errors. Following the computa-

tional experience, we use the discrepancy principle [16]

JðQp
m;nÞ < MNr2 as the stopped criterion, where r is the

standard deviation of the measurement errors.

2.6. Computational algorithm

The present algorithm for the inverse convection

problem is summarized below.

Step 1: Solve the sensitivity problem to calculate the

sensitivity coefficient ohi;k=oQm;n.

Step 2: Pick an initial guess Q0m;n and set p ¼ 0.
Step 3: Solve the direct problem to compute hi;k .

Step 4: Calculate the objective function. Terminate

the iteration process if the specified stop-

ping criterion is satisfied. Otherwise go to Step

5.

Step 5: Knowing ohi;k=oQm;n, hi;k and Zi;k , compute the

gradient of the objective function oJ=oQm;n.

Step 6: Knowing oJ=oQm;n, compute cp and dp
m;n.

Step 7: Knowing ohi;k=oQm;n, hi;k , Zi;k , and dp
m;n, compute

bp.

Step 8: Knowing bp and dp
m;n, compute Q

pþ1
m;n . Set p ¼ pþ

1 and go to Step 3.
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Fig. 6. Exact and estimated wall heat fluxes for Y1 ¼ 0:95 and
r ¼ 0:02.
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Fig. 7. Exact and estimated wall heat fluxes for Y1 ¼ 0:9 and
r ¼ 0:02.
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Fig. 8. Exact and estimated wall heat fluxes for Y1 ¼ 0:9 and
r ¼ 0:04.
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Fig. 9. Exact and estimated wall heat fluxes for Y1 ¼ 0:95 and
r ¼ 0:02.
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3. Results and discussion

To examine the accuracy of the method presented in

this paper, three test cases are considered for the esti-

mation of the upper wall heat flux from the simulated

measured temperature data. The effects of the mea-

surement errors, the functional form of the wall heat

flux, and the location of the sensors on the accuracy of

the estimation are investigated. The measurement errors

are assumed to be additive, uncorrelated and normally

distributed, with known standard deviation and zero

mean. The measured temperature data, Z, are simulated
by adding random errors to the exact temperature, h,
computed from the solution of the direct problem

Z ¼ h þ rf ð19Þ

where r is the standard deviation of the measurement
data, f is a random variable of normal distribution with

zero mean and unit standard deviation. In the present

study, Pr, Prt and Re are taken to be 0.7, 0.9 and 20,000,
respectively. Forty-one equally spaced measurements

are taken both in 06X 6 100 and 06 s6 0:1 for all the
cases considered in this work. The data are used as input

to reconstruct the unknown wall heat flux in the inverse

problem. The measurement errors become more corre-

lated as the sampling rate increases and the distance

between the sensors decreases [1]. High correlation be-

tween measurement data provides less information for

the inverse analysis. Furthermore, the computational

time and experimental expenditures also increase. It is

shown that increasing the measurement points from

21� 21 to 41� 41 improves the accuracy significantly.
As a result, 41� 41 measurement points are used in this
paper.

In the first case, the unknown wall heat flux is as-

sumed to be a function of X only

Fig. 10. The exact function for the wall heat flux.
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Fig. 11. Exact and estimated wall heat fluxes for Y1 ¼ 0:9 and
r ¼ 0:02.
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Fig. 12. Exact and estimated wall heat fluxes for Y1 ¼ 0:9 and
r ¼ 0:04.
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QðX ; sÞ ¼ 0:2X 06X < 50
36� 9

25
X 506X 6 100

�
ð20Þ

The solutions of the inverse analysis from temperature

measurements taken inside the flow Y1 ¼ 0:9 for noisy
input data r ¼ 0:02 is shown in Fig. 2. The deviation
between the exact and estimated wall heat fluxes is

maximum near the discontinuity, i.e. X ¼ 50. The effects
of measurement errors are shown in Fig. 3. A compar-

ison of Figs. 2 and 3 shows that the accuracy of the

estimation decreases as r is increased. The sensitivity
coefficient is the first derivative of the dimensionless

temperature with respective to the unknown wall heat

flux. A large sensitivity coefficient indicates that the di-

mensionless temperature is sensitive to changes in the

unknown wall heat flux, while a small sensitivity coeffi-

cient implies that the dimensionless temperature is in-

sensitive to changes in the unknown wall heat flux. Figs.

4 and 5 show the sensitivity coefficient ohðX ; Y ; sÞ=oQ2;2
at different sensor locations, i.e. Y ¼ 0:95 and 0.9, re-
spectively. The magnitude of the sensitivity coefficient

increases as the distance between the upper wall and the

sensors decreases. Fig. 6 is used to show the effects of the

location of the sensors on the inverse solution. As a

result, more accurate solution is obtained when the

sensors are closer to the unknown wall heat flux.

In the second case, the wall heat flux is taken to be a

function of s only

QðX ; sÞ ¼ 200s 06 s6 0:05
200ð0:1� sÞ 0:056 s6 0:1

�
ð21Þ

Figs. 7–9 show the inverse solutions from the measured

temperature data taken inside the flow. The wall heat

flux is well reconstructed for all the results. Comparing

Fig. 7 with Fig. 8, it is noted that the accuracy of the

estimation decreases as r is increased. A comparison of
Figs. 7 and 9 shows that the accuracy of the inverse

analysis is improved when the sensors are located closer

to the unknown wall heat flux.

In the final case, the unknown wall heat flux is as-

sumed to depend on both X and s

QðX ; sÞ ¼ 14 sin p
100

X
� �

sinð10psÞ ð22Þ

which is shown in Fig. 10. Figs. 11 and 12 are used to

demonstrate the effects of measurement errors on the

accuracy of the inverse analysis. The effects of the lo-

cation of the sensors on the inverse solution are shown

in Figs. 11 and 13. Overall, it can be seen that the esti-

mation of the wall heat flux is good.

4. Conclusion

The inverse problem of determining the wall heat flux

for unsteady turbulent forced convection between flat

plates has been considered. The unknown wall heat flux

to be estimated is a function of space and time. The

temperature measurements within the flow are assumed

available. The conjugate gradient method is applied to

minimize the sum of square residuals between calculated

and measured temperature. No prior information on the

functional form of the wall heat flux is needed in the

inverse method. The sensitivity problem can be solved

only once for the iteration procedure by the conju-

gate gradient method. The performance of the present

method is tested by numerical experiments. Eleven to

twenty-five iterations are required to get the inverse so-

lutions for the cases considered in this paper. The inverse

solutions are accurate for both exact and noisy data.
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